martes, 29 de noviembre de 2011

Acústica arquitectónica

La acústica arquitectónica es una rama de la acústica aplicada a la arquitectura, que estudia el control acústico en locales y edificios, bien sea para lograr un adecuado aislamiento acústico entre diferentes recintos, o para mejorar el acondicionamiento acústico en el interior de locales. La acústica arquitectónica estudia el control del sonido en lugares abiertos (al aire libre) o en espacios cerrados.

 

La acústica arquitectónica en la Antigüedad

Los escritos más antiguos que se conocen sobre acústica arquitectónica datan del siglo I a. C., más concretamente, el año 25 a. C. y se deben a Marco Vitrubio Polio, ingeniero militar de Julio César. En estos escritos describen varios diseños para la acústica de los antiguos teatros romanos. Por ejemplo, se utilizaban vasijas de bronce afinadas que actuaban como resonadores, bajos o agudos. Aunque la vasijas servían para redirigir el sonido en una dirección diferente a la inicial, no lo reforzaban.
En las iglesias cristianas, de bóvedas altas, con muchos problemas acústicos, sobre el púlpito se colocaba un tornavoz, especie de marquesina, que evitaba que el sonido de la voz del predicador se perdiese por las bóvedas. Se consiguieron resultados muy notables.
Hasta el siglo XIX, el diseño acústico era puramente práctico y consistía, principalmente, en imitar disposiciones de salas existentes en las que la música sonaba bien. Además, había a veces, prácticas casi supersticiosas, tales como colocar alambres (que no tenían ninguna función) en los lugares altos de una iglesia o auditorio.

Wallace Clement Sabine

La acústica arquitectónica moderna, nació a finales del siglo XIX gracias al físico americano Wallace Clement Sabine.
En 1895, cuando se inauguró el Museo de Arte Fogg, los miembros del consejo de la Universidad de Harvard, al comprobar que la acústica del recinto era pésima y que el discurso de los oradores eran ininteligible, pidieron a Sabine que resolviera el problema.
Sabine llegó a la conclusión, que el problema residía en la excesiva reverberación de la sala. Para reducirla, cubrió las paredes con fieltro que es un absorbente acústico. Aunque no fue una solución ideal, la acústica mejoró y pudo utilizarse la sala.
Tras este logro, Sabine fue llamado para asesorar la construcción del nuevo Boston Symphony Hall. En el desarrollo de este proyecto, durante sus investigaciones, estableció una fórmula de cálculo del tiempo de reverberación que aplicó al recinto.
Cuando llegó el momento de la inauguración en 1900, Sabine se llevó una gran decepción, ya que el tiempo de reverberación de la sala no se ajustaba al que el había predicho teóricamente. Fue muy criticado por los medios de comunicación y por otros expertos en la materia.
Tras este fracaso Sabine abandonó sus investigaciones y volvió al mundo universitario, dedicándose a la enseñanza hasta su muerte en 1919.
Sin embargo, la historia colocó a Sabine en el lugar que merecía. En 1950, cincuenta años después de la construcción del teatro, se realizaron algunas pruebas y se pudo contrastar que los cálculos de Sabine eran correctos. De hecho, hoy en día (2005), el Boston Symphony Hall está considerado, desde el punto de vista acústico, como una de las mejores salas del mundo

Después de Sabine

Muchos autores intentaron mejorar la ecuación del tiempo de reverberación para una sala y, aunque hay otras formulaciones que cuentan con aceptación, como la de Eyring y Milligton, sin resultados mejores a los de Sabine; por lo que la fórmula de Sabine sigue en uso.
En los laboratorios Bell, E. N. Gilbert demostró que gracias a la utilización de una ecuación integral, se podía obtener un resultado por un procedimiento iterativo. Se han obtenido buenos resultados para ciertas aplicaciones.
A partir de 1968, se han desarrollado métodos informáticos de trazado de rayos sonoros con la idea de seguir todas las reflexiones que se producen y de esta forma calcular el tiempo de reverberación.
Tampoco estas técnicas recientes han dado resultados mucho mejores que las de Sabine. La fórmula de Sabine sólo ha sido mejorada al introducir un factor de absorción (x) del aire para una determinada temperatura y humedad. Factor que tiene gran importancia si se trata de grandes recintos.
Aunque Sabine es el padre de la acústica arquitectónico, se ha de tener en cuenta que la fórmula de Sabine ni es la única, ni tampoco es absolutamente fiable. Sólo se trata de una de las fórmulas más utilizadas.

Acústica en espacios abiertos

Esquema de teatro griego.
En los espacios abiertos el fenómeno preponderante es la difusión del sonido. Las ondas sonoras son ondas tridimensionales, es decir, se propagan en tres dimensiones y sus frentes de ondas son esferas radiales que salen de la fuente de perturbación en todas las direcciones. La acústica habrá de tener esto en cuenta, para intentar mejorar el acondicionamiento de los enclaves de los escenarios para aprovechar al máximo sus posibilidades y mirar como redirigir el sonido, focalizándolo en el lugar donde se ubique a los espectadores.
Los griegos construyeron sus teatros, donde las obras dramáticas y las actuaciones musicales, en espacios al aire libre (espacios abiertos) y aprovecharon las propias gradas en donde se ubicaban los espectadores (gradas escalonadas con paredes verticales) como reflectores, logrando así que el sonido reflejado reforzase el directo, de modo que llegaban a cuadruplicar la sonoridad del espacio que quedaba protegido por las gradas. El tamaño de los teatros griegos, alguno de los cuales, gracias a sus propiedades acústicas, llegó a tener capacidad para 15.000 espectadores, no ha sido igualado.
Teatro moderno al aire libre.
Los romanos utilizaron una técnica parecida, no obstante, la pared de las gradas no era plana, sino curva, lo que permitía que se perdiese menor cantidad de sonido y lo focalizaban mejor hacia un mismo punto (Planteamiento similar al del reflector parabólico). Sin embargo los más grandes entre los romanos solamente tenían capacidad para unos 5.000 espectadores. La pérdida de las condiciones se debió en gran parte a que la orchestra, que el teatro griego servía para reflejar el sonido, en Roma fue el lugar que ocupaban los senadores y otros cargos, con lo que empeoraron las condiciones.
Actualmente (2005), se aprovechan los conocimientos que la cultura clásica nos ha legado y los recintos abiertos, se construyen con paredes curvas abombadas en forma de concha o caparazón. Los materiales utilizados tienen propiedades reflectoras para facilitar el encaminamiento del sonido hacia donde se ubican los espectadores. El problema es que la respuesta en frecuencia no es uniforme y los graves llegan con mayor dificultad hasta el auditorio que los agudos.

Acústica en espacios cerrados

En los espacios cerrados, el fenómeno preponderante que se ha de tener en cuenta es la reflexión. Al público le va a llegar tanto el sonido directo como el reflejado, que si van en diferentes fases pueden producir refuerzos y en caso extremos falta de sonido. A la hora de acondicionar un local, se ha de tener en cuenta, tanto que no entre el sonido del exterior (Aislamiento acústico).
Además, en el interior se ha de lograr la calidad óptima del sonido, controlando la reverberación y el tiempo de reverberación, a través de la colocación de materiales absorbentes y reflectores acústicos.

El sonido como fenómeno físico.

El sonido, en física, es cualquier fenómeno que involucre la propagación en forma de ondas elásticas (sean audibles o no), generalmente a través de un fluido (u otro medio elástico) que esté generando el movimiento vibratorio de un cuerpo.
El sonido humanamente audible consiste en ondas sonoras que producen oscilaciones de la presión del aire, que son convertidas en ondas mecánicas en el oído humano y percibidas por el cerebro. La propagación del sonido es similar en los fluidos, donde el sonido toma la forma de fluctuaciones de presión. En los cuerpos sólidos la propagación del sonido involucra variaciones del estado tensional del medio.
La propagación del sonido involucra transporte de energía sin transporte de materia, en forma de ondas mecánicas que se propagan a través de la materia sólida, líquida o gaseosa. Como las vibraciones se producen en la misma dirección en la que se propaga el sonido, se trata de una onda longitudinal.
El sonido es un fenómeno vibratorio transmitido en forma de ondas. Para que se genere un sonido es necesario que vibre alguna fuente. Las vibraciones pueden ser transmitidas a través de diversos medios elásticos, entre los más comunes se encuentran el aire y el agua. La fonética acústica concentra su interés especialmente en los sonidos del habla: cómo se generan, cómo se perciben, y cómo se pueden describir gráfica y/o cuantitativamente.

Tono/Frecuencia


Aunque entre los dos términos exista una muy estrecha relación, no se refieren al mismo fenómeno.
El tono es una magnitud subjetiva y se refiere a la altura o gravedad de un sonido.
Sin enbargo, la frecuencia es una magnitud objetiva y mensurable referida a formas de onda periódicas.
El tono de un sonido aumenta con la frecuencia, pero no en la misma medida. Con la frecuencia lo que medimos es el número de vibraciones. Su unidad de medida es el herzio (Hz). Para expresar una frecuencia lo hacemos refiriéndonos a vibraciones por segundo. Así un frecuencia de 1 Herzio es lo mismo que decir que el sonido tiene una vibración por segundo (por cierto, un sonido de esta frecuencia sería imposible de percibir por el oido humano).

Muchas veces en aparatos relacionados con el sonido suele aparecer una gráfica que expresa su respuesta a determinadas frecuencias. Si en esta gráfica vemos una línea recta significará que todas las frecuencias son manipuladas del mismo modo. Si la curva cae en determinadas frecuencias nos estará comunicando que determinadas frecuencias las manipula más debilmente.

Timbre y Frecuencia Armónica

El timbre es la cualidad gracias a la cual podemos diferenciar el sonido de un piano de el de una flauta aunque estén interpretando la misma nota, es decir: aunque dos instrumentos emitan un sonido con la misma frecuencia podemos diferenciarlos gracias a su timbre característico.
Este fenómeno es debido a que un sonido no esta formado sólo de una frecuenca, sino por la suma de otras que son múltiplos de la fundamental. Estas otras frecuencias varían en intensidad y son llamadas armónicos. La proporción e intensidad de estos armónicos son diferentes en cada instrumentos y es por ello que podemos diferenciar sus sonidos.
Jean Foirier demostró matemáticamente que toda función periodica no senoidal puede ser descompuesta en una serie de funciones senoidales. Las senoidales carecen de armónicos, por lo cual podemos considerarlas puras. Este modo de descomponer una señal es conocido como análisis de Fourier.
Si a una señal se le van añadiendo armónicos, la forma de onda irá variando pero su frecuencia fundamental permanecerá inalterada. Por lo tanto vemos que el timbre varía en razón de los armónicos mientras que la frecuencia se mantiene.
Las amplitudes relativas de cada armónico varían en función de la forma de onda, siendo el de mayor amplitud el que se considera fundamental.
En el gráfico adjunto vemos una instatánea de la proporción de armónicos de un sonido.
Si a una onda pura, una senoidal, le añadimos sólo armónicos impares (3f, 5f, 7f, .....Nf) estaremos transformándola cada vez más en una onda cudrada. Llegados a los 21 armónicos habremos logrado una forma de onda razonablemente cuadrada.
Intensidad y Sonoridad.
Frente a las presiones sonoras el oido alcanza a soportar desde 2 * 10E-4 bar (umbral auditivo) hasta los 200 bar (umbral del dolor). Este es un rango muy amplio, para hacernos una idea sólo hay que pensar que el sonido de un rifle produce una presión sonora 100.000.000 de veces mayor que una hoja seca que cae de un árbol.
La intensidad es una magnitud física, por definición, es la energía sonora transportada por unidad de tiempo y que atraviesa un área perpendicular a la dirección de propagación. Más concretamente se refiere a la potencia acústica por unidad de superficie y se expresa en W/cm2
La sensación subjetiva de la intensidad se define como "sonoridad" y depende de la frecuencia, ancho de banda y duración del sonido.

Según Fechner y Weber la sensación subjetiva de la intensidad es proporcional al algoritmo de la intensidad según la forma: 
n = 10 log I/I0
• n es el nivel de la sonoridad en decibelios (db).
• I0 es el valor de la intensidad umbral que percibe el oido humano, que es de 10 -10 W/cm2, equivalente a 2 * 104 bar de presión sonora.
Dado que la sonoridad define un fenómeno subjetivo de gran amplitud, con unos valores extremos muy alejados, es necesario utilizar una unidad más manejable y objetiva. Para ello se utiliza una escala comprimida, logarítmica en lugar de lineal. Las cantidad varían en una relación de 1:100.000.000 (1:10E6), es por ello que se utiliza una escala logarítmica, siendo la unidad de dicha escala el Belio.
El Belio resulta se una unidad demasiado grande en le práctica por lo que habitualmente se utiliza la décima parte, el decibelio (db).
El decibelio se utiliza como referencia, está referido a un nivel de referencia predeterminado. Se utiliza para expresar ganancias o relaciones de potencia. 

db = 10 log Po/Pi
• Pi = Potencia de Entrada
• Po = Potencia de Salida.
En acústica se emplea el db para medir niveles de presión sonora referidos a un nivel definido Ps. Entonces se define el nivel de presión sonora P como el número de decibelios que P se halla por encima de Ps. El nivel de referencia de presión acústica Ps adoptado universalmente es el correspondiente al umbral de audición humano, es decir, 2 * 10E-4 bar, equivalente a 0db SPL (Sound Pressure Level o Nivel de Presión Sonora).

Con todos estos datos podemos crear una tabla aproximada para ver la magnitud de todos estos valores. 

Estimación en db
Estudio de grabación vacío. 0 db
Murmullo a tres metros. 10 db
Paso de las hojas de un libro 10 db
Susurro a un metro 20 db
Calle sin tráfico en zona residencial 30 db
Dormitorio tranquilo de día 25 db
Conversación a tres metros 45 db
Orquesta de cuerda y viento 60 db
Orquesta de metales 70 db
Despertador a 40 cm 80 db
Calle ruidosa con mucho tráfico 90 db
Fábrica industrial ruidosa 100 db
Umbral del dolor 120 db
Avión a reacción a 200m 140 db
Cohete espacial a unos 3.000m 200 db
La tabla siguiente se refiere a la sensación subjetiva y el cambio físico, objetivo que la provoca.
Sensación Subjetiva
Cambio Físico
Volumen Amplitud
Timbre Forma de onda (Contenido Armónico)
Tono Frecuencia.

EL SONIDO Y LAS ONDAS

Una onda es una perturbación que avanza o que se propaga en un medio material o incluso en el vacío. A pesar de la naturaleza diversa de las perturbaciones que pueden originarlas, todas las ondas tienen un comportamiento semejante. El sonido es un tipo de onda que se propaga únicamente en presencia de un medio que haga de soporte de la perturbación. Los conceptos generales sobre ondas sirven para describir el sonido, pero, inversamente, los fenómenos sonoros permiten comprender mejor algunas de las características del comportamiento ondulatorio.

LA NATURALEZA DEL SONIDO

Las ondas sonoras constituyen un tipo de ondas mecánicas que tienen la virtud de estimular el oído humano y generar la sensación sonora. En el estudio del sonido se deben distinguir los aspectos físicos de los aspectos fisiológicos relacionados con la audición. Desde un punto de vista físico el sonido comparte todas las propiedades características del comportamiento ondulatorio, por lo que puede ser descrito utilizando los conceptos sobre ondas. A su vez el estudio del sonido sirve para mejorar la comprensión de algunos fenómenos típicos de las ondas. Desde un punto de vista fisiológico sólo existe sonido cuando un oído es capaz de percibirlo.

El sonido y su propagación

Las ondas que se propagan a lo largo de un muelle como consecuencia de una compresión longitudinal del mismo constituyen un modelo de ondas mecánicas que se asemeja bastante a la forma en la que el sonido se genera y se propaga. Las ondas sonoras se producen también como consecuencia de una compresión del medio a lo largo de la dirección de propagación. Son, por tanto, ondas longitudinales.

Si un globo se conecta a un pistón capaz de realizar un movimiento alternativo mediante el cual inyecta aire al globo y lo toma de nuevo, aquél sufrirá una secuencia de operaciones de inflado y desinflado, con lo cual la presión del aire contenido dentro del globo aumentará y disminuirá sucesivamente. Esta serie de compresiones y encarecimientos alternativos llevan consigo una aportación de energía, a intervalos, del foco al medio y generan ondas sonoras. La campana de un timbre vibra al ser golpeada por su correspondiente martillo, lo que da lugar a compresiones sucesivas del medio que la rodea, las cuales se propagan en forma de ondas . Un diapasón, la cuerda de una guitarra o la de un violín producen sonido según un mecanismo análogo.

En todo tipo de ondas mecánicas el medio juega un papel esencial en la propagación de la perturbación, hasta el punto de que en ausencia de medio material, la vibración, al no tener por donde propasarse, no da lugar a la formación de la onda correspondiente. La velocidad de propagación del sonido depende de las características del medio. En el caso de medios gaseosos, como el aire, las vibraciones son transmitidas de un punto a otro a través de choques entre las partículas que constituyen el gas, de ahí que cuanto mayor sea la densidad de éste, mayor será la velocidad de la onda sonota correspondiente. En los medios sólidos son las fuerzas que unen entre sí las partículas constitutivas del cuerpo las que se encargan de propagar la perturbación de un punto a otro. Este procedimiento más directo explica que la velocidad del sonido sea mayor en los sólidos que en los gases.

Sonido físico y sensación sonora

No todas las ondas sonoras pueden ser percibidas por el oído humano, el cual es sensible únicamente a aquellas cuya frecuencia está comprendida entre los 20 y los 20 000 Hz. En el aire dichos valores extremos corresponden a longitudes de onda que van desde 16 metros hasta 1,6 centímetros respectivamente. En general se trata de ondas de pequeña amplitud.

Cuando una onda sonora de tales características alcanza la membrana sensible del tímpano, produce en él vibraciones que son transmitidas por la cadena de huesecillos hasta la base de otra membrana situada en la llamada ventana oval, ventana localizada en la cóclea o caracol. El hecho de que la ventana oval sea de 20 a 30 veces más pequeña que el tímpano da lugar a una amplificación que llega a aumentar entre 40 y 90 veces la presión de la onda que alcanza al tímpano. Esta onda de presión se propaga dentro del caracol a través de un líquido viscoso hasta alcanzar otra membrana conectada a un sistema de fibras fijas por sus extremos a modo de cuerdas de arpa, cuyas deformaciones elásticas estimulan las terminaciones de los nervios auditivos. Las señales de naturaleza eléctrica generadas de este modo son enviadas al cerebro y se convierten en sensación sonora. Mediante este proceso el sonido físico es convertido en sonido fisiológico.

CUALIDADES DEL SONIDO

El oído es capaz de distinguir unos sonidos de otros porque es sensible a las diferencias que puedan existir entre ellos en lo que concierne a alguna de las tres cualidades que caracterizan todo sonido y que son la intensidad, el tono y el timbre. Aun cuando todas ellas se refieren al sonido fisiológico, están relacionadas con diferentes propiedades de las ondas sonoras.

Intensidad

La intensidad del sonido percibido, o propiedad que hace que éste se capte como fuerte o como débil, está relacionada con la intensidad de la onda sonora correspondiente, también llamada intensidad acústica. La intensidad acústica es una magnitud que da idea de la cantidad de energía que está fluyendo por el medio como consecuencia de la propagación de la onda.

Se define como la energía que atraviesa por segundo una superficie unidad dispuesta perpendicularmente a la dirección de propagación. Equivale a una potencia por unidad de superficie y se expresa en W/m2. La intensidad de una onda sonora es proporcional al cuadrado de su frecuencia y al cuadrado de su amplitud y disminuye con la distancia al foco.

La magnitud de la sensación sonora depende de la intensidad acústica, pero también depende de la sensibilidad del oído. El intervalo de intensidades acústicas que va desde el umbral de audibilidad, o valor mínimo perceptible, hasta el umbral del dolor es muy amplio, estando ambos valores límite en una relación del orden de 1014

Debido a la extensión de este intervalo de audibilidad, para expresar intensidades sonoras se emplea una escala cuyas divisiones son potencias de diez y cuya unidad de medida es el decibelio (dB). Ello significa que una intensidad acústica de 10 decibelios corresponde a una energía diez veces mayor que una intensidad de cero decibelios; una intensidad de 20 dB representa una energía 100 veces mayor que la que corresponde a 0 decibelios y así sucesivamente.

Otro de los factores de los que depende la intensidad del sonido percibido es la frecuencia. Ello significa que para una frecuencia dada un aumento de intensidad acústica da lugar a un aumento del nivel de sensación sonora, pero intensidades acústicas iguales a diferentes frecuencias pueden dar lugar a sensaciones distintas.

Tono

El tono es la cualidad del sonido mediante la cual el oído le asigna un lugar en la escala musical, permitiendo, por tanto, distinguir entre los graves y los agudos. La magnitud física que está asociada al tono es la frecuencia. Los sonidos percibidos como graves corresponden a frecuencias bajas, mientras que los agudos son debidos a frecuencias altas. Así el sonido más grave de una guitarra corresponde a una frecuencia de 82,4 Hz y el más agudo a 698,5 hertzs.

Junto con la frecuencia, en la percepción sonora del tono intervienen otros factores de carácter psicológico. Así sucede por lo general que al elevar la intensidad se eleva el tono percibido para frecuencias altas y se baja para las frecuencias bajas. Entre frecuencias comprendidas entre 1 000 y 3 000 Hz el tono es relativamente independiente de la intensidad.

Timbre

El timbre es la cualidad del sonido que permite distinguir sonidos procedentes de diferentes instrumentos, aun cuando posean igual tono e intensidad. Debido a esta misma cualidad es posible reconocer a una persona por su voz, que resulta característica de cada individuo.

El timbre está relacionado con la complejidad de las ondas sonoras que llegan al oído. Pocas veces las ondas sonoras corresponden a sonidos puros, sólo los diapasones generan este tipo de sonidos, que son debidos a una sola frecuencia y representados por una onda armónica. Los instrumentos musicales, por el contrario, dan lugar a un sonido más rico que resulta de vibraciones complejas. Cada vibración compleja puede considerarse compuesta por una serie de vibraciones armónico simples de una frecuencia y de una amplitud determinadas, cada una de las cuales, si se considerara separadamente, daría lugar a un sonido puro. Esta mezcla de tonos parciales es característica de cada instrumento y define su timbre. Debido a la analogía existente entre el mundo de la luz y el del sonido, al timbre se le denomina también color del tono.

FENÓMENOS ONDULATORIOS

Las propiedades de las ondas se manifiestan a través de una serie de fenómenos que constituyen lo esencial del comportamiento ondulatorio. Así, las ondas rebotan ante una barrera, cambian de dirección cuando pasan de un medio a otro, suman sus efectos de una forma muy especial y pueden salvar obstáculos o bordear las esquinas.

El estudio de los fenómenos ondulatorios supone la utilización de conceptos tales como periodo, frecuencia, longitud de onda y amplitud, y junto a ellos el de frente de onda, el cual es característico de las ondas bi y tridimensionales.
Se denomina frente de ondas al lugar geométrico de los puntos del medio que son alcanzados en un mismo instante por la perturbación.

Las ondas que se producen en la superficie de un lago, como consecuencia de una vibración producida en uno de sus puntos, poseen frentes de onda circulares. Cada uno de esos frentes se corresponden con un conjunto de puntos del medio que están en el mismo estado de vibración, es decir a igual altura. Debido a que las propiedades del medio, tales como densidad o elasticidad, son las mismas en todas las direcciones, la perturbación avanza desde el foco a igual velocidad a lo largo de cada una de ellas, lo que explica la forma circular y, por tanto, equidistante del foco, de esa línea que contiene a los puntos que se encuentran en el mismo estado de vibración.

Las ondas tridimensionales, como las producidas por un globo esférico que se infla y desinfla alternativamente, poseen frentes de ondas esféricos si el foco es puntual y si el medio, como en el caso anterior, es homogéneo.

Reflexión y refracción de las ondas

Cuando una onda alcanza la superficie de separación de dos medios de distinta naturaleza se producen, en general, dos nuevas ondas, una que retrocede hacia el medio de partida y otra que atraviesa la superficie límite y se propaga en el segundo medio. El primer fenómeno se denomina reflexión y el segundo recibe el nombre de refracción.

En las ondas monodimensionales como las producidas por la compresión de un muelle, la reflexión lleva consigo una inversión del sentido del movimiento ondulatorio. En las ondas bi o tridimensionales la inversión total se produce únicamente cuando la incidencia es normal, es decir, cuando la dirección,en la que avanza la perturbación es perpendicular a la superficie reflectante. Si la incidencia es oblicua se produce una especie de rebote, de modo que el movimiento ondulatorio reflejado cambia de dirección, pero conservando el valor del ángulo que forma con la superficie límite.

En el caso de las ondas sonoras, la reflexión en una pared explica el fenómeno del eco. Si la distancia a la pared es suficiente, es posible oír la propia voz reflejada porque el tiempo que emplea el sonido en ir y volver permite separar la percepción de la onda incidente de la reflejada. El oído humano sólo es capaz de percibir dos sonidos como separados si distan uno respecto del otro más de 0,1 segundos, de ahí que para que pueda percibiese el eco la superficie reflectiva debe estar separada del observador 17 metros por lo menos, cantidad que corresponde a la mitad de la distancia que recorre el sonido en el aire en ese intervalo de tiempo (17 m = 340 m/s • 0,1 s/2).

En los espacios cerrados, como las salas, el sonido una vez generado se refleja sucesivas veces en las paredes, dando lugar a una prolongación por algunos instantes del sonido original. Este fenómeno se denomina reverberación y empeora las condiciones acústicas de una sala, puesto que hace que los sonidos anteriores se entremezclen con los posteriores. Su eliminación se logra recubriendo las paredes de materiales, como corcho o moqueta, que absorben las ondas sonoras e impiden la reflexión.

El fenómeno de la refracción supone un cambio en la velocidad de propagación de la onda, cambio asociado al paso de un medio a otro de diferente naturaleza o de diferentes propiedades. Este cambio de velocidad da lugar a un cambio en la dirección del movimiento ondulatorio. Como consecuencia, la onda refractada se desvía un cierto ángulo respecto de la incidente.

La refracción se presenta con cierta frecuencia debido a que los medios no son perfectamente homogéneos, sino que sus propiedades y, por lo tanto, la velocidad de propagación de las ondas en ellos, cambian de un punto a otro. La propagación del sonido en el aire sufre refracciones, dado que su temperatura no es uniforme. En un día soleado las capas de aire próximas a la superficie terrestre están más calientes que las altas y la velocidad del sonido, que aumenta con la temperatura, es mayor en las capas bajas que en las altas. Ello da lugar a que el sonido, como consecuencia de la refracción, se desvía hacia arriba. En esta situación la comunicación entre dos personas suficientemente separadas se vería dificultada. El fenómeno contrario ocurre durante las noches, ya que la Tierra se enfría más rápidamente que el aire.

La difracción

Las ondas son capaces de traspasar orificios y bordear obstáculos interpuestos en su camino. Esta propiedad característica del comportamiento ondulatorio puede ser explicada como consecuencia del principio de Huygens y del fenómeno de interferencias.
Así, cuando una fuente de ondas alcanza una placa con un orificio o rendija central, cada punto de la porción del frente de ondas limitado por la rendija se convierte en foco emisor de ondas secundarias todas de idéntica frecuencia. Los focos secundarios que corresponden a los extremos de la abertura generan ondas que son las responsables de que el haz se abra tras la rendija y bordee sus esquinas. En los puntos intermedios se producen superposiciones de las ondas secundarias que dan lugar a zonas de intensidad máxima y de intensidad mínima típicas de los fenómenos de interferencias.

Ambos fenómenos que caracterizan la difracción de las ondas dependen de la relación existente entre el tamaño de la rendija o del obstáculo y la longitud de onda. Así, una rendija cuya anchura sea del orden de la longitud de la onda considerada, será completamente bordeada por la onda incidente y, además, el patrón de interferencias se reducirá a una zona de máxima amplitud idéntica a un foco. Es como si mediante este procedimiento se hubiera seleccionado uno de los focos secundarios descritos por Huygens en el principio que lleva su nombre.

viernes, 11 de noviembre de 2011

Claves para ecualizar correctamente

Un ecualizador es un procesador capaz de funcionar como un filtro, aumentando o disminuyendo la ganancia de cada frecuencia disponible. Con la EQ podemos dar más carácter a un instrumento o restarle protagonismo sin necesidad de recurrir al volumen, también podremos mejorar el sonido dándole más brillo y restándole en frecuencias para asentar el instrumento en la mezcla. En general, el proceso debe aplicarse de un modo discreto. Salvo que uses la EQ de un modo creativo, debes ecualizar de forma que "no se note que lo has hecho". Cuando estés mezclando, si no estás seguro del rango de frecuencias en el que se mueve un instrumento en particular; sube todas las ganancias de una en una hasta la mitad y barre todo el espectro de frecuencias. El instrumento sonará más fuerte cuando pases justo por la zona de frecuencias en la que se mueve. En la EQ, podemos encontrar la siguiente terminología: ROLL-OFF. Se refiere al método por el que se eliminan todas las frecuencias que hay por debajo o por encima de cierto punto, e implica de forma habitual la utilización de filtros paso-bajo o paso-alto. SHELF. Se presenta en dos formas: "HIGH-SHELF" y "LOW-SHELF", y simplemente extiende la atenuación de la frecuencia seleccionada a la frecuencia más alta o más baja que hay disponible en el rango del audio. HI-PASS. Filtro paso-alto. Pasan todas las frecuencias desde un punto marcado hacia la derecha. Básicamente, suelen pasar las frecuencias más agudas. LO-PASS. Filtro paso-bajo. Pasan todas las frecuencias desde un punto marcado hacia la izquierda. Sirve para cortar las frecuencias agudas. BAND-PASS. Filtro paso banda. Sólo permanece la frecuencia seleccionada. El resto se eliminan. BANDA ELIMINADA. En este caso se corta la frecuencia seleccionada. BANDA. Se refiere al número de áreas o gamas en que está dividido un ecualizador. PARAMÉTRICO. Un EQ con controles de frecuencia, ganancia y Q para todas las bandas. PARAGRÁFICO. Es un EQ paramétrico en el que puedes dibujar la curva de respuesta sobre una gráfica de la respuesta en frecuencia. ¿Te sucede que cada vez que estás frente a tu mezcladora, ya sea analógica o de software, donde tienes un verdadero arsenal de recursos para moldear tu sonido, te pierdes con tantos parámetros, te la pasas muévele y muévele a las perillas y al final sientes que sonaba mejor antes de que le hubieras hecho algo? Bueno, pues puede que estos simples consejos te ayuden a lograr algo más interesante con menos ajustes. En este artículo hablaré de tres procedimientos comunes que ayudan a definir un sonido y verás que, a pesar de que no tengas muchos conocimientos técnicos sobre la producción y la ingeniería te servirán para ir más a la segura. Toma en cuenta que producir un buen sonido no es cosa fácil, pero justamente mi interés con este blog es participarte los conocimientos que te permitan ir en una dirección correcta. No con la finalidad de que repitas “recetas”, sino que desarrolles un criterio propio de producción que logre reflejar lo más fielmente tus ideas. Aspectos preliminares Si eres músico intérprete, comienza por definir correctamente el sonido de tu instrumento antes de llegar a tu programa de grabación o tu “mixer”. Por ejemplo: -Si tocas guitarra acústica cuida que tus cuerdas estén en buen estado. que tu interpretación suene bien. Si es el caso de una guitarra eléctrica buscar que el sonido no tenga ruidos de todo tipo, falsos contactos, etc. -Si es una bateria, cuida que todos los parches tengan un sonido claro y con buenos armónicos. Checa que los “herrajes” no generen ruidos indeseados. -Si es el caso de un instrumento de aliento todo aquello que evite problemas. (a lo mejor todo esto te está sonando medio bobo pero hazme caso y adelante te explico porqué) Antes de que comiences a poner las manos en el ecualizador, si estás microfoneando el instrumento, busca una posición adecuada para que el micro capte algún sonido interesante. No partas solamente de lo que has visto se hace en “vivo”. Por razones que en este momento no tiene caso comentar, el microfoneo en vivo tiene menos opciones que lo que puedes hacer en tu “home studio” o estudio casero, así que experimenta con posiciones en diferentes áreas del instrumento, por ejemplo. No te fíes totalmente de lo que estás escuchando desde tu posición. Mejor graba una pequeña parte y escúchala directamente en tus monitores. No es exactamente igual lo que captan tus oídos que lo que capta el micro. -Haz los ajustes pertinentes y de preferencia anota lo que haces, de modo que si encuentras algo que te gusta podrás remitirte a la anotación en cualquier otro momento. Lo ideal es que siempre lleves una bitácora de tu trabajo en estudio. -En el caso de la guitarra eléctrica, si estás tocando por “linea” haz una correcta selección de las pastillas de modo que obtengas un sonido propio pero con un buen balance de todas las frecuencias. Hasta aquí todavía no debe haber entrado el ecualizador en acción. Todos estos ajustes preliminares son para limpiar nuestro sonido y tener un material que permita al ecualizador darle aquello que de manera natural no tiene. Tips para ecualización No ecualizes sólo por ecualizar. Si tienes un buen sonido no le agregues nada. A la hora de la mezcla es altamente probable que necesites ecualizar de nuevo para definir cada instrumento con respecto a los demás. En esta etapa es común que mucha gente sobreecualiza la señal y después resulta imposible revertir el proceso. Haz ajustes conservadores y efectivos. Acostúmbrate no sólo a ecualizar en más sino también en menos. ¿Que quiere decir esto? Uno de los errores más comunes es comenzar a incrementar las frecuencias que sentimos que nos faltan, pero si se exagera entonces comienzan a faltarnos de otras que también incrementamos y después otras y otras y otras….hasta que al final ya no sabemos qué estábamos haciendo. Mejor combina ambos movimientos. Piensa que a lo mejor no es que algo falte sino que algo está sobrando. Aprovecha el filtro pasa alta que tienen la mayoría de los ecualizadores de plugin. Ajústalo de modo que atenúe aquellas frecuencias que están por debajo del sonido natural del instrumento. Eso permitirá despejar tu sonido y te ayudará a definir mejor éste a la hora de mezclar. Recuerde que cada oído tiene características propias y escucha de manera diferente. Lo que para uno suena agudo, para otra estará sonando muy grave. A más de lo subjetivo, tengamos en cuenta que cada voz es diferente a las demás. Es difícil llegar a un estándar para la ecualización y, básicamente, nos tendremos que fiar del buen oído del técnico o la operadora.